Hands-On Science

Proposal and Evaluation Procedures

Required Proposal Materials: In order for a course proposal to be evaluated for this General Education category, the Subcommittee mbst provided with:

CompletedCourse Information Worksheet Course Syllabus Completed Criteria Worksheet

Course Proposals will be evaluated based on: Course Description & Objectives Course Focus Evidence of Student Learning

CRITERIA WORKSHEET: HANDS-ON SCIENCE (to be completed by faculty applicant)

F	REQUIRED OF ALL COURSES		
Criteria: Students will	Evidence of Student Engagement	Assessment Types	Description
Demonstrate the ability to complete hands science by making observations, understanding fundamental scientificdesign, generating and analyzing data using quantitative tools, use abstract reasoning to interpret da and mathematical models or formula, test scientific hypothesesHandson aspects of course design may include traditional laborator based experiences, field experiences, studio work, recitations, clinical application or other appropriate experiences for the setting/disciplin	ita 150 word limit n,		150 word limit

QUANTITATIVE REASONING: COMPLETE AT LEASEFIRST THREE OF THE FOLLOWING

Criteria: Students will	Evidence of Student Engagement	Assessment Types	Description
a) Identify and use empirical evidence to describe/explaimatural phenomena through application of a scientific method.	150 word limit		150 word limit
b) Identify and use empirical evidence to predic natural phenomena through application of a scientific method.	t 150 word limit		150 word limit
c) Use scientific principles to designategies to answer operended questions.	150 word limit		150 word limit
d) Use scientific principles to evaluaterategies to answer operended questions.	150 word limit		150 word limit

.

a) Describe some of the major concepts in science to explain natural phenomena.	150 word limit	150 word limit
b) Evaluate the quality of scientific information on the basis bmethods used to generate it.	150 word limit	150 word limit

c) Use qualitative and/or quantitative analyses

CRITERIA CHECKLIST: SOLUTIONS THROUGH SCIENCE (to be completed by evaluator)

REQUIRED OF ALL COURSES		
Criteria: Students will	Course Meets Criteria?	Comments
Demonstrate the ability to complete hand		

Demonstrate the ability to complete hand on science by making observations, understanding fundamental scientific design, generating and analyzing data using quantitative tools, use abstract reasoning to interpret data and mathematical models

SCIENTIFIC REASONING: COMPLETAET LEAST THE FIRST FIVE OF THE FOLLOWING		
Criteria: Students will	Course Meets Criteria?	Comments
a) Identify and use empirical evidence to describe/explaimatural phenomena through application of a scientific method.	Yes No Unclear	
b) Identify and use empirical evidence to predictnatural phenomena through application of a scientific method.	Yes No Unclear	
c) Use scientific principles to design strategies to answer ope e nded questions.	Yes No Unclear	
d) Use scientific principles to evaluate strategies to answer ope e nded questions.	Yes No Unclear	
e) Use scientific principles to implement strategies to answer ope e nded questions.	Yes No Unclear	
 f) Critically evaluate scientific arguments a identifiesthe limits of scientific knowledge. 	nd Yes No Unclear	
g) Explore complex questions and identify how they impact or are impacted by external issues (political, economic, or ethical).	Yes No Unclear	
h) Solve or demonstrate resolutions to complex questions or problems requiring the application of scientific concepts.	Yes No Unclear	
i) Communicate scientific ideas effectively.	Yes No Unclear	

Total Number of SCIENTIFIC REASONING Criteria Met by Course Proposal:

Critoria: Students will	Course Moets Criteria?	Commonts
a) Describe some of the major concepts in science to explain natural phenomena.	Yes No Unclear	oonincing
b) Evaluate the quality of scientific information on the basis of methods used to generate it.	Yes No Unclear	
c) Use qualitative and/or quantitative analyses to draw inferences co nclusions from data.	Yes No Unclear	
d) Explore complex questions and identify how they impact or are impacted by external issues (political, economic, or ethical).	Yes No Unclear	

Hands-On Science: experiential laboratory-based science

Student Learning Outcomes

Quantitative Reasoning: Students will be able to interpret models and solve quantitative problems from different contexts with real world relevance; understand and create reasonable arguments supported by quantitative evidence; and clearly communicate those arguments in effective mats (e.g., using words, tables approximate) and mathematical equations)

Scientific Reasoning: Students will be able to identify and use empirical evidence to describe, explain, and predict natural phenomena through application of the scientific method; and use scientific principles to design, evaluate, and implement strategies to answer opernded questions.

Knowledge of the Physical World: Students will be able to describe some of the major concepts in science to explain natural phenomena; and evaluate the quality of scientific information on the basis of methods used to generate it.

COURSE DESCRIPTION & OBJECTIVES

Based on the course syllabass, sign an appropriate rating to course description and objectives in relation to the required Student